File

util-src/crypto.c @ 13126:d043834f15d2

mod_http: Use RFC 7239 Forwarded header to find original client IP Prefer over X-Forwarded-* since it has an actual specification. Main practical difference is that Forwarded may carry more properties than only the IP address since it is a structured header. Since we parse it into an array, it is easier to do the logical thing and iterate backwards trough proxies until an untrusted one is encountered. Compare the handling of X-Forwarded-For. The 'secure' field now accounts for the full chain of proxies, which must be secure all the way to be considered secure.
author Kim Alvefur <zash@zash.se>
date Sat, 03 Jun 2023 17:10:04 +0200
parent 12976:a187600ec7d6
line wrap: on
line source

/* Prosody IM
-- Copyright (C) 2022 Matthew Wild
--
-- This project is MIT/X11 licensed. Please see the
-- COPYING file in the source package for more information.
--
*/

/*
* crypto.c
* Lua library for cryptographic operations using OpenSSL
*/

#include <string.h>
#include <stdlib.h>

#ifdef _MSC_VER
typedef unsigned __int32 uint32_t;
#else
#include <inttypes.h>
#endif

#include "lua.h"
#include "lauxlib.h"
#include <openssl/crypto.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/obj_mac.h>
#include <openssl/pem.h>

#if (LUA_VERSION_NUM == 501)
#define luaL_setfuncs(L, R, N) luaL_register(L, NULL, R)
#endif

/* The max size of an encoded 'R' or 'S' value. P-521 = 521 bits = 66 bytes */
#define MAX_ECDSA_SIG_INT_BYTES 66

#include "managed_pointer.h"

#define PKEY_MT_TAG "util.crypto key"

static BIO* new_memory_BIO(void) {
	return BIO_new(BIO_s_mem());
}

MANAGED_POINTER_ALLOCATOR(new_managed_EVP_MD_CTX, EVP_MD_CTX*, EVP_MD_CTX_new, EVP_MD_CTX_free)
MANAGED_POINTER_ALLOCATOR(new_managed_BIO_s_mem, BIO*, new_memory_BIO, BIO_free)
MANAGED_POINTER_ALLOCATOR(new_managed_EVP_CIPHER_CTX, EVP_CIPHER_CTX*, EVP_CIPHER_CTX_new, EVP_CIPHER_CTX_free)

#define CRYPTO_KEY_TYPE_ERR "unexpected key type: got '%s', expected '%s'"

static EVP_PKEY* pkey_from_arg(lua_State *L, int idx, const int type, const int require_private) {
	EVP_PKEY *pkey = *(EVP_PKEY**)luaL_checkudata(L, idx, PKEY_MT_TAG);
	int got_type;
	if(type || require_private) {
		lua_getuservalue(L, idx);
		if(type != 0) {
			lua_getfield(L, -1, "type");
			got_type = lua_tointeger(L, -1);
			if(got_type != type) {
				const char *got_key_type_name = OBJ_nid2sn(got_type);
				const char *want_key_type_name = OBJ_nid2sn(type);
				lua_pushfstring(L, CRYPTO_KEY_TYPE_ERR, got_key_type_name, want_key_type_name);
				luaL_argerror(L, idx, lua_tostring(L, -1));
			}
			lua_pop(L, 1);
		}
		if(require_private != 0) {
			lua_getfield(L, -1, "private");
			if(lua_toboolean(L, -1) != 1) {
				luaL_argerror(L, idx, "private key expected, got public key only");
			}
			lua_pop(L, 1);
		}
		lua_pop(L, 1);
	}
	return pkey;
}

static int Lpkey_finalizer(lua_State *L) {
	EVP_PKEY *pkey = pkey_from_arg(L, 1, 0, 0);
	EVP_PKEY_free(pkey);
	return 0;
}

static int Lpkey_meth_get_type(lua_State *L) {
	EVP_PKEY *pkey = pkey_from_arg(L, 1, 0, 0);

	int key_type = EVP_PKEY_id(pkey);
	lua_pushstring(L, OBJ_nid2sn(key_type));
	return 1;
}

static int base_evp_sign(lua_State *L, const int key_type, const EVP_MD *digest_type) {
	EVP_PKEY *pkey = pkey_from_arg(L, 1, (key_type!=NID_rsassaPss)?key_type:NID_rsaEncryption, 1);
	luaL_Buffer sigbuf;

	size_t msg_len;
	const unsigned char* msg = (unsigned char*)lua_tolstring(L, 2, &msg_len);

	size_t sig_len;
	unsigned char *sig = NULL;
	EVP_MD_CTX *md_ctx = new_managed_EVP_MD_CTX(L);

	if(EVP_DigestSignInit(md_ctx, NULL, digest_type, NULL, pkey) != 1) {
		lua_pushnil(L);
		return 1;
	}
	if(key_type == NID_rsassaPss) {
		EVP_PKEY_CTX_set_rsa_padding(EVP_MD_CTX_pkey_ctx(md_ctx), RSA_PKCS1_PSS_PADDING);
	}
	if(EVP_DigestSign(md_ctx, NULL, &sig_len, msg, msg_len) != 1) {
		lua_pushnil(L);
		return 1;
	}

	// COMPAT w/ Lua 5.1
	luaL_buffinit(L, &sigbuf);
	sig = memset(luaL_prepbuffer(&sigbuf), 0, sig_len);

	if(EVP_DigestSign(md_ctx, sig, &sig_len, msg, msg_len) != 1) {
		lua_pushnil(L);
	}
	else {
		luaL_addsize(&sigbuf, sig_len);
		luaL_pushresult(&sigbuf);
		return 1;
	}

	return 1;
}

static int base_evp_verify(lua_State *L, const int key_type, const EVP_MD *digest_type) {
	EVP_PKEY *pkey = pkey_from_arg(L, 1, (key_type!=NID_rsassaPss)?key_type:NID_rsaEncryption, 0);

	size_t msg_len;
	const unsigned char *msg = (unsigned char*)luaL_checklstring(L, 2, &msg_len);

	size_t sig_len;
	const unsigned char *sig = (unsigned char*)luaL_checklstring(L, 3, &sig_len);

	EVP_MD_CTX *md_ctx = EVP_MD_CTX_new();

	if(EVP_DigestVerifyInit(md_ctx, NULL, digest_type, NULL, pkey) != 1) {
		lua_pushnil(L);
		goto cleanup;
	}
	if(key_type == NID_rsassaPss) {
		EVP_PKEY_CTX_set_rsa_padding(EVP_MD_CTX_pkey_ctx(md_ctx), RSA_PKCS1_PSS_PADDING);
	}
	int result = EVP_DigestVerify(md_ctx, sig, sig_len, msg, msg_len);
	if(result == 0) {
		lua_pushboolean(L, 0);
	} else if(result != 1) {
		lua_pushnil(L);
	}
	else {
		lua_pushboolean(L, 1);
	}
cleanup:
	EVP_MD_CTX_free(md_ctx);
	return 1;
}

static int Lpkey_meth_public_pem(lua_State *L) {
	char *data;
	size_t bytes;
	EVP_PKEY *pkey = pkey_from_arg(L, 1, 0, 0);
	BIO *bio = new_managed_BIO_s_mem(L);
	if(PEM_write_bio_PUBKEY(bio, pkey)) {
		bytes = BIO_get_mem_data(bio, &data);
		if (bytes > 0) {
			lua_pushlstring(L, data, bytes);
		}
		else {
			lua_pushnil(L);
		}
	}
	else {
		lua_pushnil(L);
	}
	return 1;
}

static int Lpkey_meth_private_pem(lua_State *L) {
	char *data;
	size_t bytes;
	EVP_PKEY *pkey = pkey_from_arg(L, 1, 0, 1);
	BIO *bio = new_managed_BIO_s_mem(L);

	if(PEM_write_bio_PrivateKey(bio, pkey, NULL, NULL, 0, NULL, NULL)) {
		bytes = BIO_get_mem_data(bio, &data);
		if (bytes > 0) {
			lua_pushlstring(L, data, bytes);
		}
		else {
			lua_pushnil(L);
		}
	}
	else {
		lua_pushnil(L);
	}
	return 1;
}

static int push_pkey(lua_State *L, EVP_PKEY *pkey, const int type, const int privkey) {
	EVP_PKEY **ud = lua_newuserdata(L, sizeof(EVP_PKEY*));
	*ud = pkey;
	luaL_newmetatable(L, PKEY_MT_TAG);
	lua_setmetatable(L, -2);

	/* Set some info about the key and attach it as a user value */
	lua_newtable(L);
	if(type != 0) {
		lua_pushinteger(L, type);
		lua_setfield(L, -2, "type");
	}
	if(privkey != 0) {
		lua_pushboolean(L, 1);
		lua_setfield(L, -2, "private");
	}
	lua_setuservalue(L, -2);
	return 1;
}

static int Lgenerate_ed25519_keypair(lua_State *L) {
	EVP_PKEY *pkey = NULL;
	EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_ED25519, NULL);

	/* Generate key */
	EVP_PKEY_keygen_init(pctx);
	EVP_PKEY_keygen(pctx, &pkey);
	EVP_PKEY_CTX_free(pctx);

	push_pkey(L, pkey, NID_ED25519, 1);
	return 1;
}

static int Limport_private_pem(lua_State *L) {
	EVP_PKEY *pkey = NULL;

	size_t privkey_bytes;
	const char* privkey_data;
	BIO *bio = new_managed_BIO_s_mem(L);

	privkey_data = luaL_checklstring(L, 1, &privkey_bytes);
	BIO_write(bio, privkey_data, privkey_bytes);
	pkey = PEM_read_bio_PrivateKey(bio, NULL, NULL, NULL);
	if (pkey) {
		push_pkey(L, pkey, EVP_PKEY_id(pkey), 1);
	}
	else {
		lua_pushnil(L);
	}

	return 1;
}

static int Limport_public_pem(lua_State *L) {
	EVP_PKEY *pkey = NULL;

	size_t pubkey_bytes;
	const char* pubkey_data;
	BIO *bio = new_managed_BIO_s_mem(L);

	pubkey_data = luaL_checklstring(L, 1, &pubkey_bytes);
	BIO_write(bio, pubkey_data, pubkey_bytes);
	pkey = PEM_read_bio_PUBKEY(bio, NULL, NULL, NULL);
	if (pkey) {
		push_pkey(L, pkey, EVP_PKEY_id(pkey), 0);
	}
	else {
		lua_pushnil(L);
	}

	return 1;
}

static int Led25519_sign(lua_State *L) {
	return base_evp_sign(L, NID_ED25519, NULL);
}

static int Led25519_verify(lua_State *L) {
	return base_evp_verify(L, NID_ED25519, NULL);
}

/* encrypt(key, iv, plaintext) */
static int Levp_encrypt(lua_State *L, const EVP_CIPHER *cipher, const unsigned char expected_key_len, const unsigned char expected_iv_len, const size_t tag_len) {
	EVP_CIPHER_CTX *ctx;
	luaL_Buffer ciphertext_buffer;

	size_t key_len, iv_len, plaintext_len;
	int ciphertext_len, final_len;

	const unsigned char *key = (unsigned char*)luaL_checklstring(L, 1, &key_len);
	const unsigned char *iv = (unsigned char*)luaL_checklstring(L, 2, &iv_len);
	const unsigned char *plaintext = (unsigned char*)luaL_checklstring(L, 3, &plaintext_len);

	if(key_len != expected_key_len) {
		return luaL_error(L, "key must be %d bytes", expected_key_len);
	}
	if(iv_len != expected_iv_len) {
		return luaL_error(L, "iv must be %d bytes", expected_iv_len);
	}
	if(lua_gettop(L) > 3) {
		return luaL_error(L, "Expected 3 arguments, got %d", lua_gettop(L));
	}

	// Create and initialise the context
	ctx = new_managed_EVP_CIPHER_CTX(L);

	// Initialise the encryption operation
	if(1 != EVP_EncryptInit_ex(ctx, cipher, NULL, NULL, NULL)) {
		return luaL_error(L, "Error while initializing encryption engine");
	}

	// Initialise key and IV
	if(1 != EVP_EncryptInit_ex(ctx, NULL, NULL, key, iv)) {
		return luaL_error(L, "Error while initializing key/iv");
	}

	luaL_buffinit(L, &ciphertext_buffer);
	unsigned char *ciphertext = (unsigned char*)luaL_prepbuffsize(&ciphertext_buffer, plaintext_len+tag_len);

	if(1 != EVP_EncryptUpdate(ctx, ciphertext, &ciphertext_len, plaintext, plaintext_len)) {
		return luaL_error(L, "Error while encrypting data");
	}

	/*
	* Finalise the encryption. Normally ciphertext bytes may be written at
	* this stage, but this does not occur in GCM mode
	*/
	if(1 != EVP_EncryptFinal_ex(ctx, ciphertext + ciphertext_len, &final_len)) {
		return luaL_error(L, "Error while encrypting final data");
	}
	if(final_len != 0) {
		return luaL_error(L, "Non-zero final data");
	}

	if(tag_len > 0) {
		/* Get the tag */
		if(1 != EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, tag_len, ciphertext + ciphertext_len)) {
			return luaL_error(L, "Unable to read AEAD tag of encrypted data");
		}
		/* Append tag */
		luaL_addsize(&ciphertext_buffer, ciphertext_len + tag_len);
	} else {
		luaL_addsize(&ciphertext_buffer, ciphertext_len);
	}
	luaL_pushresult(&ciphertext_buffer);

	return 1;
}

static int Laes_128_gcm_encrypt(lua_State *L) {
	return Levp_encrypt(L, EVP_aes_128_gcm(), 16, 12, 16);
}

static int Laes_256_gcm_encrypt(lua_State *L) {
	return Levp_encrypt(L, EVP_aes_256_gcm(), 32, 12, 16);
}

static int Laes_256_ctr_encrypt(lua_State *L) {
	return Levp_encrypt(L, EVP_aes_256_ctr(), 32, 16, 0);
}

/* decrypt(key, iv, ciphertext) */
static int Levp_decrypt(lua_State *L, const EVP_CIPHER *cipher, const unsigned char expected_key_len, const unsigned char expected_iv_len, const size_t tag_len) {
	EVP_CIPHER_CTX *ctx;
	luaL_Buffer plaintext_buffer;

	size_t key_len, iv_len, ciphertext_len;
	int plaintext_len, final_len;

	const unsigned char *key = (unsigned char*)luaL_checklstring(L, 1, &key_len);
	const unsigned char *iv = (unsigned char*)luaL_checklstring(L, 2, &iv_len);
	const unsigned char *ciphertext = (unsigned char*)luaL_checklstring(L, 3, &ciphertext_len);

	if(key_len != expected_key_len) {
		return luaL_error(L, "key must be %d bytes", expected_key_len);
	}
	if(iv_len != expected_iv_len) {
		return luaL_error(L, "iv must be %d bytes", expected_iv_len);
	}
	if(ciphertext_len <= tag_len) {
		return luaL_error(L, "ciphertext must be at least %d bytes (including tag)", tag_len);
	}
	if(lua_gettop(L) > 3) {
		return luaL_error(L, "Expected 3 arguments, got %d", lua_gettop(L));
	}

	/* Create and initialise the context */
	ctx = new_managed_EVP_CIPHER_CTX(L);

	/* Initialise the decryption operation. */
	if(!EVP_DecryptInit_ex(ctx, cipher, NULL, NULL, NULL)) {
		return luaL_error(L, "Error while initializing decryption engine");
	}

	/* Initialise key and IV */
	if(!EVP_DecryptInit_ex(ctx, NULL, NULL, key, iv)) {
		return luaL_error(L, "Error while initializing key/iv");
	}

	luaL_buffinit(L, &plaintext_buffer);
	unsigned char *plaintext = (unsigned char*)luaL_prepbuffsize(&plaintext_buffer, ciphertext_len);

	/*
	* Provide the message to be decrypted, and obtain the plaintext output.
	* EVP_DecryptUpdate can be called multiple times if necessary
	*/
	if(!EVP_DecryptUpdate(ctx, plaintext, &plaintext_len, ciphertext, ciphertext_len-tag_len)) {
		return luaL_error(L, "Error while decrypting data");
	}

	if(tag_len > 0) {
		/* Set expected tag value. Works in OpenSSL 1.0.1d and later */
		if(!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag_len, (unsigned char*)ciphertext + (ciphertext_len-tag_len))) {
			return luaL_error(L, "Error while processing authentication tag");
		}
	}

	/*
	* Finalise the decryption. A positive return value indicates success,
	* anything else is a failure - the plaintext is not trustworthy.
	*/
	int ret = EVP_DecryptFinal_ex(ctx, plaintext + plaintext_len, &final_len);

	if(ret <= 0) {
		/* Verify failed */
		lua_pushnil(L);
		lua_pushliteral(L, "verify-failed");
		return 2;
	}

	luaL_addsize(&plaintext_buffer, plaintext_len + final_len);
	luaL_pushresult(&plaintext_buffer);
	return 1;
}

static int Laes_128_gcm_decrypt(lua_State *L) {
	return Levp_decrypt(L, EVP_aes_128_gcm(), 16, 12, 16);
}

static int Laes_256_gcm_decrypt(lua_State *L) {
	return Levp_decrypt(L, EVP_aes_256_gcm(), 32, 12, 16);
}

static int Laes_256_ctr_decrypt(lua_State *L) {
	return Levp_decrypt(L, EVP_aes_256_ctr(), 32, 16, 0);
}

/* r, s = parse_ecdsa_sig(sig_der) */
static int Lparse_ecdsa_signature(lua_State *L) {
	ECDSA_SIG *sig;
	size_t sig_der_len;
	const unsigned char *sig_der = (unsigned char*)luaL_checklstring(L, 1, &sig_der_len);
	const size_t sig_int_bytes = luaL_checkinteger(L, 2);
	const BIGNUM *r, *s;
	int rlen, slen;
	unsigned char rb[MAX_ECDSA_SIG_INT_BYTES];
	unsigned char sb[MAX_ECDSA_SIG_INT_BYTES];

	if(sig_int_bytes > MAX_ECDSA_SIG_INT_BYTES) {
		luaL_error(L, "requested signature size exceeds supported limit");
	}

	sig = d2i_ECDSA_SIG(NULL, &sig_der, sig_der_len);

	if(sig == NULL) {
		lua_pushnil(L);
		return 1;
	}

	ECDSA_SIG_get0(sig, &r, &s);

	rlen = BN_bn2binpad(r, rb, sig_int_bytes);
	slen = BN_bn2binpad(s, sb, sig_int_bytes);

	if (rlen == -1 || slen == -1) {
		ECDSA_SIG_free(sig);
		luaL_error(L, "encoded integers exceed requested size");
	}

	ECDSA_SIG_free(sig);

	lua_pushlstring(L, (const char*)rb, rlen);
	lua_pushlstring(L, (const char*)sb, slen);

	return 2;
}

/* sig_der = build_ecdsa_signature(r, s) */
static int Lbuild_ecdsa_signature(lua_State *L) {
	ECDSA_SIG *sig = ECDSA_SIG_new();
	BIGNUM *r, *s;
	luaL_Buffer sigbuf;

	size_t rlen, slen;
	const unsigned char *rbin, *sbin;

	rbin = (unsigned char*)luaL_checklstring(L, 1, &rlen);
	sbin = (unsigned char*)luaL_checklstring(L, 2, &slen);

	r = BN_bin2bn(rbin, (int)rlen, NULL);
	s = BN_bin2bn(sbin, (int)slen, NULL);

	ECDSA_SIG_set0(sig, r, s);

	luaL_buffinit(L, &sigbuf);

	/* DER structure of an ECDSA signature has 7 bytes plus the integers themselves,
	   which may gain an extra byte once encoded */
	unsigned char *buffer = (unsigned char*)luaL_prepbuffsize(&sigbuf, (rlen+1)+(slen+1)+7);
	int len = i2d_ECDSA_SIG(sig, &buffer);
	luaL_addsize(&sigbuf, len);
	luaL_pushresult(&sigbuf);

	ECDSA_SIG_free(sig);

	return 1;
}

#define REG_SIGN_VERIFY(algorithm, digest) \
	{ #algorithm "_" #digest "_sign",       L ## algorithm ## _ ## digest ## _sign    },\
	{ #algorithm "_" #digest "_verify",     L ## algorithm ## _ ## digest ## _verify  },

#define IMPL_SIGN_VERIFY(algorithm, key_type, digest) \
  static int L ## algorithm ## _ ## digest ## _sign(lua_State *L) {   \
  	return base_evp_sign(L, key_type, EVP_ ## digest());          \
  }                                                                   \
  static int L ## algorithm ## _ ## digest ## _verify(lua_State *L) { \
  	return base_evp_verify(L, key_type, EVP_ ## digest());        \
  }

IMPL_SIGN_VERIFY(ecdsa, NID_X9_62_id_ecPublicKey, sha256)
IMPL_SIGN_VERIFY(ecdsa, NID_X9_62_id_ecPublicKey, sha384)
IMPL_SIGN_VERIFY(ecdsa, NID_X9_62_id_ecPublicKey, sha512)

IMPL_SIGN_VERIFY(rsassa_pkcs1, NID_rsaEncryption, sha256)
IMPL_SIGN_VERIFY(rsassa_pkcs1, NID_rsaEncryption, sha384)
IMPL_SIGN_VERIFY(rsassa_pkcs1, NID_rsaEncryption, sha512)

IMPL_SIGN_VERIFY(rsassa_pss, NID_rsassaPss, sha256)
IMPL_SIGN_VERIFY(rsassa_pss, NID_rsassaPss, sha384)
IMPL_SIGN_VERIFY(rsassa_pss, NID_rsassaPss, sha512)

static const luaL_Reg Reg[] = {
	{ "ed25519_sign",                Led25519_sign             },
	{ "ed25519_verify",              Led25519_verify           },

	REG_SIGN_VERIFY(ecdsa, sha256)
	REG_SIGN_VERIFY(ecdsa, sha384)
	REG_SIGN_VERIFY(ecdsa, sha512)

	REG_SIGN_VERIFY(rsassa_pkcs1, sha256)
	REG_SIGN_VERIFY(rsassa_pkcs1, sha384)
	REG_SIGN_VERIFY(rsassa_pkcs1, sha512)

	REG_SIGN_VERIFY(rsassa_pss, sha256)
	REG_SIGN_VERIFY(rsassa_pss, sha384)
	REG_SIGN_VERIFY(rsassa_pss, sha512)

	{ "aes_128_gcm_encrypt",         Laes_128_gcm_encrypt      },
	{ "aes_128_gcm_decrypt",         Laes_128_gcm_decrypt      },
	{ "aes_256_gcm_encrypt",         Laes_256_gcm_encrypt      },
	{ "aes_256_gcm_decrypt",         Laes_256_gcm_decrypt      },

	{ "aes_256_ctr_encrypt",         Laes_256_ctr_encrypt      },
	{ "aes_256_ctr_decrypt",         Laes_256_ctr_decrypt      },

	{ "generate_ed25519_keypair",    Lgenerate_ed25519_keypair },

	{ "import_private_pem",          Limport_private_pem       },
	{ "import_public_pem",           Limport_public_pem        },

	{ "parse_ecdsa_signature",       Lparse_ecdsa_signature    },
	{ "build_ecdsa_signature",       Lbuild_ecdsa_signature    },
	{ NULL,                          NULL                      }
};

static const luaL_Reg KeyMethods[] = {
	{ "private_pem",            Lpkey_meth_private_pem       },
	{ "public_pem",             Lpkey_meth_public_pem        },
	{ "get_type",               Lpkey_meth_get_type          },
	{ NULL,                     NULL                         }
};

static const luaL_Reg KeyMetatable[] = {
	{ "__gc",               Lpkey_finalizer },
	{ NULL,                 NULL            }
};

LUALIB_API int luaopen_prosody_util_crypto(lua_State *L) {
#if (LUA_VERSION_NUM > 501)
	luaL_checkversion(L);
#endif

	/* Initialize pkey metatable */
	luaL_newmetatable(L, PKEY_MT_TAG);
	luaL_setfuncs(L, KeyMetatable, 0);
	lua_newtable(L);
	luaL_setfuncs(L, KeyMethods, 0);
	lua_setfield(L, -2, "__index");
	lua_pop(L, 1);

	/* Initialize lib table */
	lua_newtable(L);
	luaL_setfuncs(L, Reg, 0);
	lua_pushliteral(L, "-3.14");
	lua_setfield(L, -2, "version");
#ifdef OPENSSL_VERSION
	lua_pushstring(L, OpenSSL_version(OPENSSL_VERSION));
	lua_setfield(L, -2, "_LIBCRYPTO_VERSION");
#endif
	return 1;
}

LUALIB_API int luaopen_util_crypto(lua_State *L) {
	return luaopen_prosody_util_crypto(L);
}